當前所在位置: 網站首頁 -- 學科科研 -- 學術科研 -- 正文

學術科研

我校學者提出耕作地表形貌特征信息檢測與評估方法
作者:編輯:高亮審核:時間:2023-11-03點擊:

南湖新聞網訊(通訊員 劉國陽)近日,我校yl7703永利夏俊芳教授課題組研究成果以“Measurement and evaluation method offarmland microtopography feature information based on 3D LiDAR and inertialmeasurement unit”為題在土壤科學和耕作研究領域期刊Soil& tillage research發表。該研究提出了基于三維激光雷達與慣性測量單元信息融合的耕作地表形貌特征信息檢測與評估方法,為評價農田耕作質量提供了一種高效的技術手段,同時降低了農田地表土壤粗糙度的測量誤差。

圖1 地表形貌特征信息測量工作原理

圖1 地表形貌特征信息測量工作原理

土壤表面粗糙度是描述耕作地表微地貌的一項重要指标,主要體現在地表高低起伏程度,反映了土壤表面動态變化特征,可用于評價耕整機械作業質量、探究土壤-觸土部件作用關系,以及為農田管理與高标準農田建設提供基礎數據。

研究基于三維激光雷達與慣性測量單元信息融合方法,通過緊耦合疊代算法結合點雲信息與位姿信息構建農田三維地貌圖。通過統計旋耕、翻耕、壟作等三種典型農田在不同方向上的粗糙度參數,分析農田耕作地貌特征信息各向異性,探明測量過程中采樣方法、數據傾斜、地表周期性結構對測量精度的影響規律。同時為了方便田間實際應用,研制了往複式地貌檢測裝置,實現地表形貌非接觸測量,可一次性獲取整個農田全景地貌。根據用戶需求可調節采樣樣方大小和數量,減少戶外工作時間、成本,有效提高了測量精度與效率。

圖2 往複式地貌檢測裝置

1.Support plate 2.Pulley 3.Proximity switch 4.Timing belt 5.Stepper motor 6.Motor power supply 7.Driver board 8.Pan tilt 9.Quick connect plate 10.Linear guide rail 11.Limit block 12.3D lidar 13.Inertial measurement unit 14.Farmland surface 15.Scan Area

圖2 往複式地貌檢測裝置

我校yl7703永利博士研究生劉國陽為論文第一作者,鄭侃副教授為通訊作者。該研究得到了國家自然科學基金和學院引導專項等項目的支持。

審核人:夏俊芳

【英文摘要】

Soil surface roughness (SSR) is animportant indicator that characterizes the microtopography feature of farmlandafter tillage. It has a high practical value for sowing and seedling raising,farmland management, and drainage irrigation in agricultural production. Thetraditional method often is prone to damage the surface microstructure andresults in low efficiency and accuracy. In this study, a new method wasproposed to address the limitations of traditional measurement methods of SSR.The proposed measurement and evaluation method of farmland microtopographyfeature information based on 3D lidar and inertial measurement unit (IMU) couldbe used to quickly obtain the global point cloud map containing the height dataof the test field. Taking three different tillage methods of farmland as theresearch object, the surface root mean square height (RMSH), correlation length(CL), and their ratio were selected as roughness parameters to explore theanisotropy of microtopography features in different directions. The measurementmethod was then used to study the effects of sampling processing methods(number, interval, and length) on the measurement accuracy in both OX and OYdirections. The results indicate that under the same accuracy requirements, forthe 2 × 2 m area, the farmland with different microtopography features needs tobe processed with different sample numbers, sample intervals, and samplelengths. The optimal combination of sample parameters for Test field I issample number of 50, sample interval of 120 mm, and sample interval of 1600 mm,and that in Test field II is sample number of 50, sample interval of 160 mm,and sample interval of 1800 mm. For Test field III, the optimal combination issample number of 100, sample interval of 40 mm, and sample length of 1200 mm.The experimental results compared with the traditional method illustrate thehigh accuracy and good feasibility of the proposed method for measuring andevaluating the microtopography feature information of the farmland. The resultsof the study help to understand the microtopography features and itsparameterization of the farmland after tillage, which could further reveal therole and significance of SSR parameters in objectively evaluating farmlandtillage quality and optimizing farmland management.

論文鍊接https://doi.org/10.1016/j.still.2023.105921

來源:南湖新聞網https://news.hzau.edu.cn/2023/1103/68265.shtml

Baidu
sogou